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Multiple Comparisons in Long-Term

Toxicity Studies
by Ludwig Hothorn

Several multiple comparison procedures (MCPs) are discussed in relation to the specific formulation of type 1 and type
I1 errors in toxicity studies and the typical one-way design control versus k treatment/dose groups, Examples of these MCPs
are: the standard many-to-one MCP (Dunnett’s procedure), sequential rejection modifications, closed testing procedures,
many-to-one MCPs with an ordered alternative hypothesis, procedures based on the assumption of a mixing distribution
of responders and nonresponders, and MCP’s for multiple end points.

Introduction

Why is it that multiple comparison procedures (MCPs) are be-
ing discussed in toxicology even today, despite the fact that they
are every-day procedures in biostatistics? This paper deals with
several sources of multiplicity in long-term toxicity studies and
possible methods for suitable statistical analysis,

Based on the closed testing principle discussed by Marcus et
al. (1), a revolution in MCPs has taken place. We can thus
diminish the antagonism enforcing a.., (type I error) and
decreasing the power 7w (where # = 1 — 3, 8 ... type H error).
This paper presents a special case where o, is held and the
maximum power of the two-sample case is guaranteed. This
paper is therefore litnited to regulatory toxicity studies, .g., car-
cinogenicity, mutagenicity, according to national/international
guidelines, for example, the European Community (EC)
guideline (2). Regulatory toxicity studies are so-called safety
studies, the purpose of which is to ascertain carcinogenic,
mutagenic side effects etc. For this purpose, the statistical
hypothesis in relation to type I and IT errors should be specified:
@) The risk of a type I error, o, represents the producer’s risk:
the conclusion is therefore that a toxic side effect exists, while in
fact this is not the case. ) The risk of a type Il error, 3, represents
the customer’s risk: the conclusion is therefore that a toxic effect
does not exist, while in truth one actually does. Intuitively, it is
clear that both risks must be handled with care, even though con-
trolling the type Il error should be of primary concern in
toxicology.

Usually, the type 1l error is defined comparisonwise and the
type I error experimentwise (o). A typical design analyses
comparisons between the control and treatment/dose groups,
several time points, both sexes, elements of a muitivariate end
point vector, and multiple tumor sites. Because of a dramatic in-
crease in the type If error with such a high-dimensional design,
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an «.,, formulation is normally used for the subdesign control
versus k treatment/dose groups. The purpose of an adequate
statistical analysis is to minimize the type II error while holding
¢terp constant. This article will therefore investigate several
MCPs to establish the conditions under which the above require-
ment can be fulfilled.

Experimental Design of Long-Term
Toxicity Studies

In long-term toxicity studies, there are three types of experi-
mental design that can be distinguished for the above-mentioned
subdesign. a) Control, dose,, . . ., dose;, where C = 0 < D,
< ... < Dy, the purpose of which is to analyze dose response
analysis or estimate the no-observed-effect dose. b) Control,
treatment, . . ., treatment;, with treatment T} . . . several sub-
stances, combinations, etc. The purpose is to characterize all
contrasts {control versus T; ¥ je (1, .. ., &)} ¢) Control, {D;or
T}), P*. The purpose of using a positive control group, P* (ad-
rninistration of a known toxic substance), is to check the sensi-
tivity of the test system currently in use (animals, bacteria, etc.).
Using this simple closed testing procedure, ., can also be held
constant in this most complex design (L. Hothorn, in
preparation).

Multiple Comparison versus Modeling

Two widely used and disjointed types of statistical approach
are possible for long-term toxicity studies: modeling, choosing
a suitable dose~response model and fitting the model to the data,
e.g., for the AMES assay according to Margolin et al. (3); and
MCPs. This paper only discusses MCPs.

MCPs are suitable for all three above-mentioned types of
design, Modeling is sometimes uncertain for the typical
guideline-related two or three dose-groups design. MCPs usually
use fewer a priori assumptions (e.g., no problems with a correct
model choice). An interaction of incorrect model choice and
estimation error in the modeling approach is possible. Robust use
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of MCPs in routine evaluation of studies with multiple end points
is possible. Of course, the MCP approach also has several disad-
vantages, such as no possibility of extrapolation.

MCPs in Control versus k Treatment/
Dose Groups Design

Two-Sample versus k-Sample Testing

Toxicology journals often contain papers in which the
statistical analysis is based on the two-sample ¢-test or the
Wilcoxon-Mann-Whitney U test, even in the k-sample many-to-
one situation (4) using a comparisonwise o, level; i.e.,
testing each contrast with ¢« for example on a 005 level in-
dependently. Using this simple approach, the experimentwise
o.;p-level is violated on the one hand, whereas, on the other, the
type Il error is smaller in comparison with an MCP and does not
depend on the number of treatment/dose groups. This is the
testing dilernma always faced in toxicity studies, Several com-
promises and an ideal situation {minimum type II error and
holding ..,) will now be discussed.

Many-to-one MCPs can be recommended on the whole. But
if two-sample tests are used, then they should be used only for
the contrasts (C — D), but not for the between-dose contrasts,
(D —Dywith(i = fle(d,..., k.

k-Sample Tests versus k-Sample Procedures

There is some desire to clarify the difference between tests and
MCPs from both a toxicological and a biostatistical viewpoint.
A k-sample test, e.g. , the well-known F-test, represents a single
decision problem:

HO:FC=FD1 =....=FDk

Hy :Fc#Fp, #..#Fp,

with F distribution function for testing the global substance ef-
fect. An MCP represents a multiple decision problem:

HY P #FV(i#)e .k

for testing every contrast (C — D)) ¥ je(l,. .., k). Because not
only the global effect, but also each single contrast (C — Dj) is
of interest in toxicology, application of MCP is recommended.
A combination of both approaches based on the closed testing
principle is also possible, providing both global and local
information.

All-Pair versus Many-to-One Procedures

Commonly used statistical software packages are generally
oriented to all-pair MCPs, such as Tukey, Scheffe, Duncan, etc.
All-pair MCPs analyze not only contrasts of interests (C — D;)
but also contrasts (I — Diywith (i # j)e(l,. .., k). Thetype
1l error rate thus increases (5): control versus k=3 dose groups,
Qe = 005, o/d = 1.0; n; = 24 (with ¢ end point-specific
variance, d detectable difference); many-to-one MCP (Dunnett)
8 = 0.106; all-pair MCP (Tukey) 8 = 0.200.

The Standard Many-to-One MCP: Dunnett’s
Procedure

In control versus k treatment design, Dunnett’s (6) procedure
is commonly used to approximate normally distributed end
points. Other types of end points occurring in toxicology will not
be discussed in this paper. For dichotomous end points, see
Piegorsch (7).

Hypothesis formulation:

Hg:pc = KT, Vije(l,.,k)

H) pc <pr

without limitation, for a one-sided increase, with y; expected
value,

Test statistics: Ve (1’ ...,k) .

d; = (%5 - X¢}/yMQg(1/nc + 1/n;)

with MQ¢ the mean-square-crror estimator.
Decision rule: Hy will be rejected if:

dj > dk,df,cj.l—a.one—sided

with df = TX c(nj~1) j ¢ (C,1,..,k)

¢ = l/ﬁfnc/nj +1

The quantiles dy, 7 ¢, 1 - a, wo ! one-sidea &1€ available from tables
(8—10) or computer programs are available for calculation (1),

Dunnett’s procedure is relatively robust against violation of the
normal distribution assumption {/2, Ortseifen and Hothorn, in
preparation). However, for n; > 10, the nonparametric analog
according to Steel (13) shows a better power behavior (even in the
near normal distributed case).

The maximum power of Dunnett’s procedure is attained with:
n. = +/kn; (14-16). This is not the case for the Williams (7} pro-
cedure, assuming an ordered alternative (18).

The power depends on the number of treatment or dose groups
k, which implies that inclusion of further nonsignificant treat-
ment groups can lead to overlooking significant effects (19). A
rule for design using MCPs is to use only the minimal necessary
number of treatment/dose groups.

In the case of variance heterogenicity, Dunnett's procedure is
not robust (12). Other approaches should be used in this case,
e.g., a-adjusted Welch-tests or Brownie (20) type of control
group variance inclusion (Hothorn and Ortseifen, in
preparation).

Simultaneous versus Sequential Rejective
Procedures

The closed testing principle in many-to-one MCPs is quite
simple (in comparison with all-pair MCPs) because a complete
system of hypotheses with (2* — 1) elementary hypotheses (27)
is given. Several types of sequential rejective modifications will
be discussed: a) Bonferroni/Holm (22) procedure based on two-
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sample tests, &) sequential rejection modification according to
Marcusetal. (/) or Hayter and Tamhane (23), ¢) Hommel (24,
25)/Hochberg (26) / Rom (27) reverse Holm procedure based
on two-sample tests, 4) closed testing procedure based on global
tests (5), e) procedure with a priori hierarchical hypotheses
(28).

Bonferroni/Holm Procedure. Use specific two-sample tests
for the elementary contrasts, (C — D;), Order the related
p-values:

P; 1Py < P2y LGN Pk

Decision scheme: if

pa > a/k ==> STOP HY, .., HF

cannot be rejected, otherwise go to the next step: if

P2 > af/(k—1) ==>
1 2 k
STOP HY HY,.. HY"

is valid and H® . . ., H,"™ cannot be rejected, etc.
Marcus et al. Modification. Use the Dunnett statistics:

Vie(l,.,k):

dj = (% - %¢)//MQR(1/nc + 1/nj)

Order the test statistics:

d(l) < d(2) e S d(k)

Decision scheme: if

dgo < didf,c;1-a0ne-sided ==>
STOP HY',..,H®
cannot be rejected, otherwise go to the next step.
dix-1y < dk—l,df.cj,l—a,one-sided ==>

k k-1
STOP HY H{Y

is valid and Hy", . . ., Ho®* " cannot be rejected, efc.
Hochberg Modification. The Hochberg modification is the

numerically simplest version. Use specific two-sample tests for

the elementary contrasts, (C — D), Order the related p-values:

P Py SP2) S-S Py

Decision scheme: if

1 k
Py < @ ==> all H}’, ..., H{"

are rejected and STOP, otherwise Hy™is valid and go to the next
step. If

Pik-1) < a/2 ==> all HP, ., HyF ™V -
(k-1}
H,

are rejected and STOP, otherwise Hy*"is valid and go to the
next step, etc.

The important difference between these three modifications
is that the Marcus et al. modification is based on an MCP and
causes a dimension reduction in £, while the others are based on
two-sample tests and cause an o reduction

Holm Modification and Closed Testing Procedure. For the
Holm modification: the first step is p.;, versus a/k, in contrast
to the Hochberg modification, where the first step iS pma: versus
. The Holm modification is more powerful.

The closed testing procedure is based on a global test. Use
suitable j-dimensional many-to-one test statistics je (1, . . ., k),
e.g., Fligner/Wolfe contrast test (29). The testing strategy (for
simplicity, given here as C, k = 3) is shown in Figure 1. This
multiple procedure works simply as follows: A level « test is per-
formed on stage 1. If and only if the H5*® ' is rejected, all sub-
hypotheses at stage 2 are tested on the same « level, and so on. If
a H{ 7 is not rejected, none of the subhypotheses are rejected.

Procedure with a priori Hierarchical Hypotheses. Use
specific two-sample tests for the elementary contrasts, (C —
D;), and estimate the related p-values (without ordering).
Decision scheme: if

px > @ ==> STOP H},..., Hk

cannot be rejected, otherwise H{ is rejected, and go to the dose
level (k-1). If

Px_1 > a ==> STOP H},..H !

cannot be rejected, otherwise H4*™" is rejected, and go to the
dose level (k-2), etc.

This procedure represents a special case of the closed testing
procedure under the assumption of an ordered alternative
hypothesis. If the p; values within a real study are ordered, then
with this procedure we find an ideal situation in MCP: holding

Stage 1 I C - (Dy,Dg,Dy) I
Stage2 | C—(D1,D2)] [C-(Dy,Ds)| [C-(D2Dy}]
Stage 3 C-D,y C-D, C—-Dy

Fioure1:  Complete hypotheses system in the case of a control and three dose
groups.
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., and guaranteeing the maximum powers =; of the two-
sample tests (based on comparisonwise «). This procedure is
moderately robust against violations of this monotonicity
assumption (28).

Nonrestricted versus Ordered Alternative
Hypotheses

Now we will consider the design C, Dy, .. ., D, Assuming a
monotonic dependence of the effect on dose, restriction of alter-
native hypotheses is possible:

Hy :Fg SFDIS e < FDk

at least Fpo < FDk

With this restriction, an increase in power in relation to the MCPs

with unrestricted alternative hypotheses can be expected. Possi- -

ble MCPs are a) simultaneous MCPs: for continuous, normal-
ly distributed end points, the analogue of Dunnett’s MCP is the
Williams (/7,30) procedure. For the nonparametric case, the
analogue of Steel’s MCP is the Shirley (31,32 ) procedure. b) se-
quential rejection MCPs: MCP on a priori ordered hypotheses,
based on any two-sample tests. For binomially distributed end
points, the closed testing procedure is based on Armitage’s (33)
trend test (/9). For Poisson-distributed end points, the closed
testing procedure is based on Lee’s (34 ) trend test (/9).

Comparison of Several Procedures with
Simulation Studies

For commonly observed conditions of real toxicity study data,
namely expected value profiles, dimension of k, sample sizes n,
a levels, vanances, etc., several procedures were investigated
with simulation studies (5,18,28,30, 35-37). For practical ap-
plication, these simulation results can be summarized in a rather
simple way: recommendation of the Hommel (24) / Hochberg
(26) procedure, without restriction of the alternative hypothesis,
a power behavior near the MCPs with ordered alternative was
observed. It should be pointed out that for sequential rejection
procedures, the estimation of confidence intervals in time was not
solved satisfactorily.

Unimodal versus Mixing Distribution Assumption

All MCPs discussed in the preceding sections compare ex-
pected values. In real data, two situations may occur: greater
variability (variance) with increasing response and existence of
a subpopulation of nonresponders. This problem can be treated
by several approaches: a) use of MCPs that are robust under
variance heterogenicity (Hothorn and Ortseifen in preparation);
b) so-called location-scale models, e.g., a combination of the U-
test (location) and Ansari/Bradley (38) test [scale (39)] or the
Brownie (20) type of control group variance includion; ¢)
assumption of a mixing distribution of responders and
nonresponders with the following hypotheses:

Hg : Fe(x) = Fp(x)

HA :Fc(x) < FD(X) with FD(X)
= (1 - r)Fc(X) + eratho(x)

where ris unknown, (1—r) is the proportion of nonresponders,
and r is the proportion of responders.

Two types of Lehmann (40 ) alternative will be considered
here: shift:

Fpatho(x) = Fg(x ~ §)
according to Good (4/ } and power:
Fpatho(x) = E(X)

according to Lehmann (40). Johnson et al. (42) suggested, for
the shift alternative, approximate score statistics based on follow-
ing mixed normal score function:

sm(i)
— exp(-d?/2)exp(d®1(i/(ng + np + 1)1

where i is a rank in the combined (control +treatment) sample,
d is a constant (in the simulation study where d=0.5,1,1.5,2 were
used; only the case d=1 will be reported here), and &' is a
distribution function of the normati distribution.

As a generalization of Wilcoxon-Mann-Whitney (WMW)
scores, Conover and Salsburg (43 ) proposed the following ap-
proximate score function for the power alternative:

sc(i) = (i/(n¢ + np + 1))2-?

where a is an integer constant (a=3,4,5,6 were used in the
simulation study; here, only the case =4 will be reported).
In toxicology, tests based on this mixing distribution assump-
tion were used for behavioral studies (44), teratological studies
(45), sister chromatid exchange mutagenicity assays (42),
chronic studies (5), and micronucleus mutagenicity assays (46).
With simutation studies (42, 46), advantages in power can be
shown for several practical data situations in toxicology.

Many-to-One MCPs for Multiple
End Points

In long-term toxicity studies, several end points occur, (/9):
approximate, normally distributed (e.g., body mass); non-
normally distributed [e.g., the skewed distributed liver enzyme
ASAT (5)]; binomially distributed (e.g., tumor rate); Poisson-
distributed (e.g., number of tumors). The commonly used
evaluation consists of separate univariate analysis of each single
end point, e.g., Unkelbach et al. (47), but a multivariate analysis
of multiple end points in the many-to-one design is also possible:
a) T* modification according to Higazi and Dayton (48), b)
with better power behavior for the typical one-sided hypothesis:
multiple end point analysis (49) based on Dunnett’s procedure
(50) is a special case of parametric testing after k-ranking
transformation. Both approaches have, however, a major disad-
vantage: only decision of the global end point vector. Informa-
tion is not available on the combinations of end points, which
might go as far as the single end point case.
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D H(d") rejected
FiGurE 2. Complete hypotheses system in the case of four end points.

The multivariate problem also consists of a complete
hypothesis system of 2* — 1 elementary hypotheses (2/). The
decision scheme is quite simple (57 }, as can be seen for the four
end points in Figure 2. Based on the level c-test on each step, this
procedure shows good power behavior. This procedure is
available as a PC program for up to 10 end points (Hothorn and
Nagel, submitted).

An interesting extension of this method is possible for toxici-
ty studies with both multiple end points and multiple treatment
or dose groups based on the closed testing procedure under the
assumption of an ordered alternative using Williams (/7 MCP.
With this approach, decisions can be performed both on the
multiple end points and the multiple dose group based on level
o tests on each step, but holding o, (50).

Summary

This paper reveals several sources of multiplicity within long-
term toxicity studies and their suitable treatment, the possibility
of reducing the antagonism between holding o, and ensuring
the maximum power, that special MCPs for biostatistical analysis
of long-term toxicological studies are necessary and are available
as a PC program.
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